Energetics, Metabolic Biochemistry

e Whatis it?
e Why do we care?

* Enzymatic reactions offer a proxy to
metabolic capacity.



Energetic reactions

Endergonic - require energy to happen
Exergonic - liberate (release) energy when occurring, they are spontaneous
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What does an enzyme really look like
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(a) Enzyme activity versus temperature

Rate of reaction ——-

Temperature ——




(b) Enzyme activity versus pH

Pepsin

Relative activity =—>

Cholinesterase
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Control of enzymatic reactions
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No end-product inhibition




How can an enzyme be inhibited

Competitive
inhibitor
interferes with
active siteof /_
Enzyme SO "' Substrate ’,"'
substrate
cannot bind

Allosteric inhibitor
changes shape of
enzyme so it cannot
bind to substrate

Competitive inhibition Noncompetitive inhibition



V. = all enzymes are saturated
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Cellular energy production from glucose

membrane

Extracellular
fluid




Cellular energy productlon from glucose
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The fate of pyruvate

( Without oxygeﬁ)

With oxygen
Pyruvate

Acetyl-CoA
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Cellular energy production from glucose
Krebs cycle, TCA cycle, oxidative phosphorylation
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Intermembrane space
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The final step in cellular
energy production

The electron transport chain
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How much ATP is synthesized from 1 molecule
of glucose (6 carbons)?

'Glucose

P 8
2 y?/.{.!!:k? ! Glycolysis
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Pyruvate |

Acetyl-CoA
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Total net ATP yield = 36 — ATP-—
/ ,ﬁm

In reality:

NADH =2.5ATP
FADH, =1.5 ATP
leaky membranes

10 NADH =25
2 FADH, =3
ATP invested =-2
Direct ATP =4
Total 30 ATP
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Beta oxidation of fatty acids,
much more efficient !

Every round results in:

removal of 2 carbons

Investment of 1 ATP

1 FADH, === |5 ATP
NADH === ) 5 ATP

1 Acetyl Co-A  Invested mmm) -1 ATP

3 NADH (2.5x3) =7.5 ATP
1 FADH, (1.5) =15ATP
1direct ATP  =1ATP
Total ATP per 2 carbons = 13 ATP
30 ATP from glucose (6 carbon)
36 ATP from fatty acid (6 carbon)
20% more ATP
fatty acids have 16-120 carbons

b 720 ATP



What Is the swimming capacity in sharks?

What type of swimming: aerobic (sustained, continuous)
anaerobic (burst)

Temperature (°C)
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Group 1 Group 2 Group 3
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What is the swimming capacity in sharks?

What species are being compared and why?

Common Threshar Shark




blood

vessels
nuclei

myofibrils

blood
vessels

sarcoplasmic
reticulum

e muscle amount

e capillary density

o fiber size

e muscle myoglobin

e mitochondria volume
* enzyme activities

e thermal effects

/ff}\itochondrion

5

»capillary

Raven & Johnson (1992)
Mathieu-Costello & Hepple (2002)



Different red muscle positions
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blackmouth catshark

blackmouth catshark*

velvet belly lantern shark*

small spotted catshark*

gray smoothhound

common thresher

shortfin mako

salmon shark

n=3H

velvet belly lantern shark

n=3

n=3

n=1

small spotted catshark

gray smoothhound

*Kryvi et al. (1981)

6 10 14 18
Myoglobin concentration (mg Mb g RM)

22 26 30

values = mean + SEM

38



CS in RM at 20°C

Triakis semitasciata. |
leopard shark (7) a
Prionace glauca | A a
blue shark
Sphyrna lewini (10) a
scalloped hammerhead
Alopias vulpinus a
common thresher
Isurus oxyrinchus a
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(IU= umol substrate to product min-1)



)
| -~
-
—
©
L
)
o
=
)
e
>
e
@)
m

Ambient temperature —




Warm Fish?

* Elevated tissue temperatures (endothermy)

lateral vessels




Body temperaure (°C)
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leopard shark

blue shark

scalloped
hammerhead

common thresher

shortfin mako

shortfin mako
(in vivo temperature)

CSin RM at 15°C

Activity IU gr-twet weight
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LDH in WM at 20°C
leopard shark _ C

blue shark ' (4) & d
scalloped hammerhead (10) C
Rhizoprinodon terraenovae
A ) @ u b
Carcharhinus acronotus
blacknose shark a b
common thresher (6)  mm d
shortfin mako (30) a
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LDH in WM at 15°C

leopard shark

blue shark

scalloped hammerhead

sharpnose shark
blacknose shark

common thresher

shortfin mako

shortfin mako
(in vivo temperature)
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CS in WM at 20°C

leopard shark
blue shark
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CSin WM at 15°C

leopard shark

blue shark

scalloped
hammerhead

common thresher

shortfin mako
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(in vivo temperature)
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In summary:

Sustained swimming:
 RM has similar aerobic capacity when compared at the
same temperature.

 temperature is important

e temperature enhances sustained swimming in some
sharks

Enhanced sustained swimming is very energetically
demanding



In summary:

Burst swimming:

WM does not have similar anaerobic capacities
when compared at the same temperature.

temperature is important

temperature enhances burst swimming in some
sharks

recovery from burst swimming is species-specific

species-specific



Metabolic rate

The rate of energy consumption : Total energy use over time

1. indicates how much food animal needs
2. is a measure of total physiological activity
3. measures demand animals can place on an ecosystem

Ways to measure MR

A. Direct Calorimetry-measure heat output of an animal
calorie = energy needed to elevate 1g water by 1°C

B. Indirect Calorimetry- by way of oxygen consumption or CO, production
1 liter of oxygen consumed = 4.83kcal production (depending on diet)

Respiratory exchange ratio, R:
R= Moles of CO, produced per time / Moles of O, consumed per time

Value of 1= pure carbohydrate diet, = 0.7 lipid based diet



Sta nda I‘d Meta bOIiC Rate (SM R) no activity, no digestion assimilation, no stress
Basal Metabo“c Rate (BMR) usually applied to endotherms
Routine MetabOIiC Rate (RM R) averaged for all time

MaXimum |V|etab0|ic rate (MMR) peak value or mean peak value

What affects MR:
Age
Gender
Body temperature
Environmental temperature
Type amount of food
Activity level
Homeostasis
Time of day
Body size
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